7 research outputs found

    Multi-Granular Optical Cross-Connect: Design, Analysis, and Demonstration

    Get PDF
    A fundamental issue in all-optical switching is to offer efficient and cost-effective transport services for a wide range of bandwidth granularities. This paper presents multi-granular optical cross-connect (MG-OXC) architectures that combine slow (ms regime) and fast (ns regime) switch elements, in order to support optical circuit switching (OCS), optical burst switching (OBS), and even optical packet switching (OPS). The MG-OXC architectures are designed to provide a cost-effective approach, while offering the flexibility and reconfigurability to deal with dynamic requirements of different applications. All proposed MG-OXC designs are analyzed and compared in terms of dimensionality, flexibility/reconfigurability, and scalability. Furthermore, node level simulations are conducted to evaluate the performance of MG-OXCs under different traffic regimes. Finally, the feasibility of the proposed architectures is demonstrated on an application-aware, multi-bit-rate (10 and 40 Gbps), end-to-end OBS testbed

    Experimental Demonstration of a Cognitive Optical Network for Reduction of Restoration Time

    Get PDF
    This paper presents the implementation and performance evaluation of a cognitive heterogeneous optical network testbed. The testbed integrates the CMP, the data plane and the cognitive system and reduces by 48% the link restoration time. This paper presents the implementation and performance evaluation of a cognitive heterogeneous optical network testbed. The testbed integrates the CMP, the data plane and the cognitive system and reduces by 48% the link restoration time

    Int5Gent : an integrated end-to-end system platform for verticals and data plane solutions beyond 5G

    No full text
    Int5Gent targets the integration of innovative data plane technology building blocks under a flexible 5G network resource, slice and application orchestration framework, providing a complete 5G system platform for the validation of advance 5G services and Internet of Things (IoT) solutions. The platform can act as the enabler for the transition beyond the current 5G networking capabilities allowing novel and state-ofthe-art data transport and edge processing solutions to be evaluated under a cutting-edge network orchestration framework, with intelligent service allocation and management capabilities. A sample of the envisioned technologies include: flexible multi-Radio Access Technology (multi-RAT) baseband signal processing, millimeter Wave (mmWave)technology solutions at 60GHz and 150GHz bands, hardware-based edge processor with Time Sensitive Networking (TSN), Graphical Processing Unit (GPU)processing capabilities, and elastic Software Defined Networking (SDN)-based photonic data transport. The integration of the technology blocks is performed as part of an overall architecture that promotes edge processing and is orchestrated by a Network Function Virtualization Orchestrator (NFVO) compatible framework with edge node extensions at the network layer and an overlay vertical services application orchestrator at the user plane layer

    Photonics in Switching: Enabling Technologies and Subsystem Design

    No full text
    This paper describes recent research activities and results in the area of photonic switching carried out within the framework of the EU-funded e-Photon/ONe+ network of excellence, Virtual Department on Optical Switching. Technology aspects of photonics in switching and, in particular, recent advances in wavelength conversion, ring resonators, and packet switching and processing subsystems are presented as the building blocks for the implementation of a high-performance router for the next-generation Internet
    corecore